cách chứng minh tam giác đồng dạng

Phương pháp chứng tỏ nhì tam giác đồng dạng và phần mềm.

gia su toan lop 8 - nhì tam giac dong dang

Bạn đang xem: cách chứng minh tam giác đồng dạng

các tình huống đồng dạng của tam giác thông thường :

Trường thích hợp đồng dạng 1 : 3 cạnh ứng tỉ trọng với nhau (c – c – c)

xét ∆ABC và ∆DEF, tao với :

\frac{AB}{DE} =\frac{AC}{DF} =\frac{BC}{EF}

=> ∆ABC ~ ∆DEF (c – c – c)

Trường thích hợp đồng dạng 2 : 2 cạnh ứng tỉ trọng cùng nhau – góc xen thân thích nhì cạnh vì chưng nhau(c – g – c)

xét ∆ABC và ∆DEF, tao với :

\frac{AB}{DE} =\frac{AC}{DF}

\widehat{A}=\widehat{D}

=> ∆ABC ~ ∆DEF (c – g – c)

Trường thích hợp đồng dạng 3 : nhì góc ứng vì chưng nhau(g – g)

xét ∆ABC và ∆DEF, tao với :

\widehat{A}=\widehat{D}

\widehat{B}=\widehat{E}

=> ∆ABC ~ ∆DEF (g – g)

II > Các lăm le lí đồng dạng của nhì tam giác vuông

1. Định lí 1 : (cạnh huyền – cạnh góc vuông)
Nếu cạnh huyền và cạnh góc vuông của tam giác này tỉ trọng với cạnh huyền và cạnh góc vuông của tam giác cơ thì nhì tam giác đồng dạng.
2. Định lí 2 : (hai cạnh góc vuông)
Nếu nhì cạnh góc vuông của tam giác này tỉ trọng với nhì cạnh góc vuông của tam giác cơ thì nhì tam giác đồng dạng.
3. Định lí 3 : ( góc)
Nếu góc nhọn của tam giác này vì chưng góc nhọn của tam giác cơ thì nhì tam giác đồng dạng.

giải bài bác luyện :

Dạng 1 : chứng tỏ nhì tam giác đồng dạng – hệ thức :


Bài toán 1 :

cho ∆ABC (AB < AC), với AD là đàng phân giác nhập. Tại miền ngoài ∆ABC vẽ tia Cx sao cho \widehat{BCx}=\widehat{BAD} . Gọi I là phó điểm của Cx và AD. cmr :

a) ∆ADB đồng dạng ∆CDI.

b) \frac{AD}{AC} =\frac{AB}{AI}

c) AD2 = AB.AC – BD.DC

GIẢI.

a)∆ADB và ∆CDI , tao với :gia su toan lop 8 - tam giac dong dang

\widehat{BCx}=\widehat{BAD} (gt)

\widehat{D_1}=\widehat{D_2} (đối đỉnh)

=> ∆ADB ~ ∆CDI

b) )∆ABD và ∆AIC , tao với :

\widehat{B}=\widehat{I} (∆ADB ~ ∆CDI)

\widehat{A_1}=\widehat{A_2} (AD là phân giác)

=> ∆ABD ~ ∆AIC

=>\frac{AD}{AC} =\frac{AB}{AI}

c)=> AD.AI = AB.AC (1)

mà : \frac{AD}{CD} =\frac{BD}{DI}  (∆ADB ~ ∆CDI )

=> AD.DI = BD.CD (2)

từ (1) và (2) :

AB.AC – BD.CD = AD.AI – AD.DI = AD(AI – DI ) = AD.AD = AD2


bài toán 2 :

Cho tam giác ABC vuông bên trên A, với đàng cao AH . chứng tỏ những hệ thức :

  1. AB2 = BH.BC và AC2 = CH.BC
  2. AB2 +AC2 = BC2
  3. AH2 = BH.CH
  4. AH.BC = AB.AC

Giải.

hai tam giac vuong dong dang

gia su toan lop 8

1. AC2 = CH.BC :

Xét nhì ∆ABC và ∆ HAC, tao với :

\widehat{BAC} =\widehat{ AHC} =90^0

\widehat{C} là góc cộng đồng.

=> ∆ABC ~ ∆HAC (g – g)

=> \frac{AC}{HC}=\frac{BC}{AC}

=> AC2 = CH.BC (1)

Cmtt : AB2 = BH.BC (2)

2. AB2 +AC2 = BC2

Từ (1) và (2), tao với :

AB2 +AC2 = BH.BC + CH.BC = (BH + CH)BC = BC2

3.AH2 = BH.CH :

Xét nhì ∆HBA và ∆ HAC, tao với :

\widehat{BHC} =\widehat{ AHC} =90^0

\widehat{ABH} =\widehat{ HAC}  cùng phụ \widehat{BAH}

=> ∆HBA ~ ∆HAC (g – g)

Xem thêm: tâm đường tròn nội tiếp

=> \frac{HA}{HC}=\frac{HB}{HA}

=> AH2 = BH.CH

4. AH.BC = AB.AC :

Ta với : \frac{HA}{AB}=\frac{AC}{BC} (∆ABC ~ ∆HAC)

=> AH.BC = AB.AC.


Dạng 2 : chứng tỏ nhì tam giác đồng dạng – lăm le lí talet + hai tuyến phố trực tiếp tuy vậy song :

bài toán :

Cho ∆ABC nhọn. kẻ đàng cao BD và CE. vẽ những đàng cao DF và EG của ∆ADE. Chứng minh :

a) ∆ABD đồng dạng ∆AEG.

b) AD.AE = AB.AG = AC.AF

c) FG // BC

GIẢI.

a) xét ∆ABD và ∆AEG, tao với :gia su toan lop 8 - tam giac dong dang dinh cơ li talet

BD \bot  AC (BD là đàng cao)

EG \bot  AC (EG là đàng cao)

=> BD // EG

=> ∆ABD ~ ∆AGE

b) => \frac{AB}{AE} =\frac{AD}{AG}

=> AD.AE = AB.AG (1)

cmtt, tao được : AD.AE = AC.AF (2)

từ (1) và (2) suy đi ra :

AD.AE = AB.AG = AC.AF

c) xét ∆ABC, tao với :

AB.AG = AC.AF (cmt)

\frac{AB}{AF} =\frac{AC}{AG}

=> FG // BC (định lí hòn đảo talet)


Dạng 3 : chứng tỏ nhì tam giác đồng dạng – góc ứng đều nhau :

bài toán :

Cho ∆ABC với những đàng cao BD và CE rời nhau bên trên H. Chứng minh :

a) ∆HBE đồng dạng ∆HCE.

b) ∆HED đồng dạng ∆HBC và \widehat{HDE}=\widehat{HAE}

c) cho thấy BD = CD. Gọi M là phó điểm của AH và BC. chứng tỏ : DE vuông góc EM.

GIẢI.

a)xét ∆HBE và ∆HCD, tao với :gia su toan lop 8 - nhì tam giac dong dang - goc bang nhau

\widehat{BEH}=\widehat{CDH}=90^0 (gt)

\widehat{H_1}=\widehat{H_2} (đối đỉnh)

=> ∆HBE ~ ∆HCD (g – g)

b) ∆HED và ∆HBC, tao với :

\frac{HE}{HD} =\frac{HB}{HC} (∆HBE ~ ∆HCD)

=>\frac{HE}{HB} =\frac{HD}{HC}

\widehat{EHD}=\widehat{CHB} (đối đỉnh)

=> ∆HED ~ ∆HBC (c – g – c)

=> \widehat{D_1}=\widehat{C_1} (1)

mà : đàng cao BD và CE rời nhau bên trên H (gt)

=> H là trực tâm.

=> AH \bot  BC bên trên M.

=>\widehat{A_1}+\widehat{ABC}=90^0

mặt không giống : \widehat{C_1}+\widehat{ABC}=90^0

=>\widehat{A_1}=\widehat{C_1} (2)

từ (1) và (2) : \widehat{A_1}=\widehat{D_1}

hay : \widehat{HDE}=\widehat{HAE}

c) cmtt câu b, tao được : \widehat{A_2}=\widehat{E_2} (3)

xét ∆BCD, tao với :

DB = DC (gt)

=> ∆BCD cân nặng bên trên D

=>\widehat{B_1}=\widehat{ACB}

mà : \widehat{B_1}=\widehat{E_1} (∆HED ~ ∆HBC)

=> \widehat{E_1}=\widehat{ACB}

mà : \widehat{A_2}+\widehat{ACB}=90^0

\widehat{A_2}=\widehat{E_2} (cmt)

Xem thêm: kinh vu lan và báo hiếu

=>\widehat{E_1}+\widehat{E_2}=90^0

hay : \widehat{DEM}=90^0

=> ED \bot  EM.