hệ thức lượng trong tam giác

Nhắc lại hệ thức lượng trong tam giác vuông.

Cho tam giác \(ABC\) vuông góc bên trên đỉnh \(A\) (\(\widehat{A} = 90^0\)), tớ có:

Bạn đang xem: hệ thức lượng trong tam giác

Quảng cáo

1. \({b^2} = ab';{c^2} = a.c'\)

2. Định lý Pitago : \({a^2} = {b^2} + {c^2}\)

3. \(a.h = b.c\)

4. \(h^2= b’.c’\)

5. \(\dfrac{1}{h^{2}}\) = \(\dfrac{1}{b^{2}}\) + \(\dfrac{1}{c^{2}}\)

 

1. Định lý cosin

Định lí: Trong một tam giác bất kì, bình phương một cạnh vị tổng những bình phương của nhì cạnh còn sót lại trừ lên đường nhì chuyến tích của nhì cạnh bại liệt nhân với \(cosin\) của góc xen thân thiện bọn chúng.

Ta sở hữu những hệ thức sau:  

$$\eqalign{
& {a^2} = {b^2} + {c^2} - 2bc.\cos A \, \, (1) \cr
& {b^2} = {a^2} + {c^2} - 2ac.\cos B \, \, (2) \cr
& {c^2} = {a^2} + {b^2} - 2ab.\cos C \, \, (3) \cr} $$

Hệ trái ngược của quyết định lí cosin:

\(\cos A = \dfrac{b^{2}+c^{2}-a^{2}}{2bc}\)

\(\cos B = \dfrac{a^{2}+c^{2}-b^{2}}{2ac}\)

\(\cos C = \dfrac{a^{2}+b^{2}-c^{2}}{2ab}\)

Áp dụng: Tính phỏng lâu năm đàng trung tuyến của tam giác:

Cho tam giác \(ABC\) sở hữu những cạnh \(BC = a, CA = b\) và \(AB = c\). Gọi \(m_a,m_b\) và \(m_c\) là phỏng lâu năm những đàng trung tuyến theo thứ tự vẽ kể từ những đỉnh \(A, B, C\) của tam giác. Ta có

\({m_{a}}^{2}\) =  \(\dfrac{2.(b^{2}+c^{2})-a^{2}}{4}\)

\({m_{b}}^{2}\) = \(\dfrac{2.(a^{2}+c^{2})-b^{2}}{4}\)

\({m_{c}}^{2}\) = \(\dfrac{2.(a^{2}+b^{2})-c^{2}}{4}\)

2. Định lí sin

Định lí: Trong tam giác \(ABC\) ngẫu nhiên, tỉ số thân thiện một cạnh và sin của góc đối lập với cạnh bại liệt vị 2 lần bán kính của đàng tròn xoe nước ngoài tiếp tam giác, nghĩa là

\(\dfrac{a}{\sin A}= \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = 2R\)

Xem thêm: trong tam giác vuông đường trung tuyến

với \(R\) là nửa đường kính đàng tròn xoe nước ngoài tiếp tam giác 

Công thức tính diện tích S tam giác

Diện tích \(S\) của tam giác \(ABC\) được xem bám theo một trong những công thức sau

\(S = \dfrac{1}{2} ab \sin C= \dfrac{1}{2} bc \sin A \) \(= \dfrac{1}{2}ca \sin B \, \,(1)\)   

\(S = \dfrac{abc}{4R}\, \,(2)\)           

\(S = pr\, \,(3)\)              

\(S = \sqrt{p(p - a)(p - b)(p - c)}\)  (công thức  Hê - rông) \((4)\)

Trong đó:\(BC = a, CA = b\) và \(AB = c\); \(R, r\) là nửa đường kính đàng tròn xoe nước ngoài tiếp, bk đàng tròn xoe nội tiếp và \(S\) là diện tích S tam giác bại liệt.

3. Giải tam giác và phần mềm nhập việc đo đạc

Giải tam giác : Giải tam giác là đi tìm kiếm những nhân tố (góc, cạnh) không biết của tam giác Lúc vẫn biết một vài nhân tố của tam giác bại liệt.

Muốn giải tam giác tớ cần thiết thăm dò nguyệt lão tương tác trong những góc, cạnh vẫn cho tới với những góc, những cạnh không biết của tam giác trải qua những hệ thức đang được nêu nhập quyết định lí cosin, quyết định lí sin và những công thức tính diện tích S tam giác.

Các việc về giải tam giác: Có 3 việc cơ phiên bản về gỉải tam giác:

a) Giải tam giác lúc biết một cạnh và nhì góc.

=> Dùng quyết định lí sin nhằm tính cạnh còn sót lại.

b) Giải tam giác lúc biết nhì cạnh và góc xen giữa

=> Dùng quyết định lí cosin nhằm tính cạnh loại tía. 

Sau bại liệt sử dụng hệ trái ngược của quyết định lí cosin nhằm tính góc.

c) Giải tam giác lúc biết tía cạnh

Đối với việc này tớ dùng hệ trái ngược của quyết định lí cosin nhằm tính góc: 

    \(\cos A = \dfrac{b^{2}+c^{2}-a^{2}}{2bc}\)       

    \(\cos B = \dfrac{a^{2}+c^{2}-b^{2}}{2ac}\)

    \(cos C = \dfrac{a^{2}+b^{2}-c^{2}}{2ab}\)

Chú ý: 

Xem thêm: văn mẫu chiếc thuyền ngoài xa

1. Cần Note là một trong những tam giác giải được Lúc tớ biết 3 nhân tố của chính nó, nhập bại liệt nên sở hữu tối thiểu một nhân tố phỏng lâu năm (tức là nhân tố góc ko được quá 2)

2. Việc giải tam giác được dùng nhập những việc thực tiễn, nhất là những việc đo lường.